Rotation of Axes

\[x = r \cos \theta, \quad y = r \sin \theta \quad \text{Polar Coordinates} \]

Let \[x' = r \cos(\theta + \alpha), \quad y' = r \sin(\theta + \alpha) \]

Then
\[x' = r \cos \theta \cos \alpha - r \sin \theta \sin \alpha, \]
\[y' = r \sin \theta \cos \alpha + r \cos \theta \sin \alpha. \]

Using the polar forms for \(x \) and \(y \)
\[x' = x \cos \alpha - y \sin \alpha \]
\[y' = y \cos \alpha + x \sin \alpha. \]

Now solve for \(x \) and \(y \) in terms of \(x' \) and \(y' \). To find \(x \), multiply the equation for \(x' \) by \(\cos \alpha \), and the equation for \(y' \) by \(\sin \alpha \):
\[x' \cos \alpha = x \cos^2 \alpha - y \sin \alpha \cos \alpha \]
\[y' \sin \alpha = y \cos \alpha \sin \alpha + x \sin^2 \alpha. \]

Add the last two equations and since \(\cos^2 \alpha + \sin^2 \alpha = 1 \),
\[x' \cos \alpha + y' \sin \alpha = x. \]

Similarly, to find \(y \), multiply the equation for \(x' \) by \(-\sin \alpha \) and the equation for \(y' \) by \(\cos \alpha \)
\[-x' \sin \alpha = -x \cos \alpha \sin \alpha + y \sin^2 \alpha \]
\[y' \cos \alpha = y \cos^2 \alpha + x \sin \alpha \cos \alpha. \]

Add these two equations to get
\[-x' \sin \alpha + y' \cos \alpha = y(\sin^2 \alpha + \cos^2 \alpha) = y. \]

In summary
\[x = x' \cos \alpha + y' \sin \alpha \]
\[y = -x' \sin \alpha + y' \cos \alpha. \]
So, a quadric surface given by

\[z = Ax^2 + By^2, \]

written in the rotated coordinates becomes

\[z = A(x' \cos \alpha + y' \sin \alpha)^2 + B(-x' \sin \alpha + y' \cos \alpha)^2 \]
\[= (A \cos^2 \alpha + B \sin^2 \alpha)x'^2 + 2(A - B)(\cos \alpha \sin \alpha)x'y' + (A \sin^2 \alpha + B \cos^2 \alpha)y'^2. \]

This looks a bit complicated but it is rather general. Consider the case of rotation through an angle of 30° or \(\pi/6 \). Then \(\cos \left(\frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \) and \(\sin \left(\frac{\pi}{6} \right) = \frac{1}{2} \). So

\[x = \frac{\sqrt{3}}{2} x' + \frac{1}{2} y' \]
\[y = -\frac{1}{2} x' + \frac{\sqrt{3}}{2} y'. \]

The quadric surface

\[z = 2x^2 + y^2, \]

which is an \textit{elliptic paraboloid} becomes

\[z = 2 \left(\frac{\sqrt{3}}{2} x' + \frac{1}{2} y' \right)^2 + \left(-\frac{1}{2} x' + \frac{\sqrt{3}}{2} y' \right)^2 \]
\[= \frac{7}{4} x'^2 + \frac{\sqrt{3}}{2} x'y' + \frac{5}{4} y'^2. \]

Usually, this technique of rotating axes is used to eliminate the \(xy \)-term.