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INFORMATION DYNAMICS
IN FINANCIAL MARKETS

PATRICK DE FONTNOUVELLE
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A noisy rational expectations model of asset trading is extended to incorporate costs of
information acquisition and expectation formation. Because of the information costs, how
much information to acquire becomes an important decision. Agents make this decision
by choosing arxpectations strateggbout the future value of information. Because
expectation formation is costly, agents often choose strategies that are simpler (and thus
cheaper) than rational expectations. The model’s dynamics can be expressed in terms of
themarket precisionwhich represents the amount of information acquired by the average
agent. Under certain conditions, market precision follows an unstable and highly irregular
time path. This irregularity directly affects observable market quantities. In particular,
simulated time series for return volatility and trading volume display a copersistence
similar to that found in actual financial data.

Keywords: ARCH, Asymmetric Information, Trading Volume, Noisy Rational
Expectations

1. INTRODUCTION

If information about an asset’s value is costly, can this value be revealed fully
in a competitive equilibrium? Grossman and Stiglitz (1980) show that when the
asset in question is a security, the answer is clearly no; in equilibrium, information
gatherers must be rewarded for their costly private activities. Suppose that the asset
in question is information itself. If computing the value of information is costly,
can this value be reflected in an observable market quantity? The question is new to
this paper. We show that the answer is also no; if computation is costly, then those
who compute the true value of information must be rewarded for their efforts.

The above chain of logic leads to a startling conclusion: Not all agents can
have rational expectations about the value of information. If they did, the average
guantity of information acquired (which is observable) would reflect its true value.
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Agents would then prefer to infer the value of information directly from this
guantity, rather than making costly rational expectations computations. This cannot
be an equilibrium.

If some agents do not use rational expectations to infer the value of information,
what expectations do they use? Recent work on bounded rationality and evolu-
tion in economics [e.g., Sargent (1993), Marimon (1997), Evans and Honkapohja
(1999)] inspires our answer to this question. Of particular relevance is the complex
adaptive systems modeling approach laid out by Holland (1995). Applications of
this approach to financial markets include those by Arthur (1995), Arthur et al.
(1997), and LeBaron et al. (1999).

Besides forming rational expectations, agents in our model experiment with
various otheexpectations strategigbat are computationally cheaper than ratio-
nal expectations. If a strategy generates profits, many agents will use it in the
future. If not, few agents will use it. Instead of being governed by a single costless
rational expectations strategy, the market’s information structure depends upon a
population of competing and coevolving expectations strategies.

Toformalize the above discussion, we extend a noisy rational expectations model
of asset trading [Hellwig (1980); Lang et al. (1992)] to explicitly incorporate costs
of information acquisition and expectation formation. Acquiring information is
costly because it requires time-consuming research activities such as fundamental
analysis. Forming expectations is costly because it involves lengthy computations;
rational expectations is the most computationally intensive strategy, and thus the
most costly as wel.

The agents’ decisions of how much private information to acquire (thfgir-
mation strategiesdepend on the value of this information. They estimate this value
by choosing an expectations strategy. The model’s dynamics can be expressed in
terms of a single variableparket precisionwhich represents the amount of infor-
mation acquired by the average agent. Market precision is driven by two opposing
forces. Agents’ desire to reduce computation costs makes them use inexpensive
and destabilizing expectations strategies, which push market precision away from
equilibrium. Agents’ desire to increase trading profits makes them use rational
expectations, which pull market precision toward equilibrium. These opposing
forces generate a local instability around the equilibrium, which can result in
highly irregular time paths for market precision.

The metric for assessing the economic significance of these mathematical ef-
fects is empirically inspired. We examine how well the model explains certain
empirical features that have proved persistently puzzling to economic theorists:
serial correlation in squared returns, serial correlation in trading volume, and cor-
relation between squared returns and volume. These features are referred to jointly
ascopersistencéetween volatility and trading volume.

Under arational expectations equilibrium, the degree of information asymmetry
inthe model does not vary, and thus volatility and trading volume are both constant.
Allowing agents to change expectations strategies over time generates variation
in market precision, which in turn has a direct effect on trading activity. When
market precision is low, trading volume is low because most agents have similar
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information. Volatility is also low because there is little private information driving
asset prices. Conversely, a high level of market precision will resultin high volatility
and high trading volume. Under certain configurations of the model, the simulated
time series for volatility and trading volume display copersistence similar to that
found in actual market data.

The remainder of the paper is organized as follows. Section 2 extends the noisy
rational expectations model to include costs of information acquisition and expec-
tation formation. Section 3 summarizes the empirical behavior of volatility and
trading volume, and derives the model’s implications for these quantities. Section 4
shows that, under certain conditions, the model displays a local instability around
the steady state. Section 5 explores the model’s dynamics when there are only
two expectations strategies. An enlarged strategy space is explored in Section 6.
Section 7 concludes.

2. MODEL

The model’s construction can be divided into two distinct steps. The first consists of
specifying the mechanism through which information asymmetry affects trading
dynamics; we use for this step the noisy rational expectations model of Hellwig
(1980) and Lang et al. (1992). In this model, agents have private information about
the future value of a security. Because the supply of shares is stochastic, the market
price does not fully reveal this private information; information is thus a valuable
commodity.

We make our main theoretical contribution in the second step, which consists
of specifying how the degree of information asymmetry evolves over time. Brock
and Hommes (1997; BH) consider a linear cobweb model of commodity supply
and demand in which agents can base their views about the commodity’s future
value on either rational or naive expectations. These authors demonstrate how the
interaction of the two types of expectations can lead to highly irregular equilibrium
paths. Suppose one thinks of information as a commaodity, and of agents as pro-
ducers of this commodity. Applying a similar framework (as BH) to the process of
information production yields a rich yet relatively tractable model of information
dynamics.

Goeree and Hommes (2000; GH) extend the results of BH to include general
nonlinear supply and demand functions. Their results, in fact, apply to the rational
versus naive example presented in Sectidrv8hereas GH limit their analysis to
two competing expectations strategies, Section 6 of this paper allows for a large
number of expectations strateies, which are crucial in explaining the observed
behavior of volatility and volume.

2.1. Asset Trading

There is a continuum of agents of measure 1. Asset trading takes place at discrete
time periods indexed bye {1, 2, ..., co}. In each period, there is available one
riskless asset and one risky asset. The riskless asset guarantees a rate & return



142 PATRICK DE FONTNOUVELLE

The risky asset has prigg and pays a single terminal divideddin periodt + 1.
Risky assets thus are short-livédind there is a unique risky asset available in
each period. Agenti’s trading information setontains the market pricp, and
private informationy; ;:

Ii,t = {pb yi,ta pt—la yi,t—l? . '}'

This private information consists of the terminal dividesicplus an observation
errore;
Vit =k + €t

The supply of risky assets is a random variahleWe assume thad;, z, e,
ande; ; are independent for all j, andt. Furthermore, each of these variables is
normally distributed:

d ~ N(d, ag),
Zt ~ N(Z UZ)’
Gi,'[ ~ N(Oa 1/IO|)

The variance of the private information; is a choice variable for each agent.
Choosing a high value fgr; will give agent aninformational advantage, and hence
higher expected trading profits. Because acquiring information is time-consuming,
there is a cost associated with choosing a highThe optimal choice of; thus
will entail weighing increased trading profits against increased information costs.
Suppose for now that; is fixed. Agenti’s problem is to choose an amount
Xi.t to invest in the risky asset. The resulting portfolio generates a trading profit
i+ = Xi1(dk — Rp). The agent chooses; in order to maximize expected risk-
adjusted trading profits denoted byIT; ;:

iy = E[mit | lit] — %Var[mqt [ lit], )

wherer is the risk-aversion parameter. Ageistdemand for the risky asset is then
given by
_ E(@ —Rplliy

it = 2
Xt r Var(d, | li.¢) @
Substituting this demand into (1) yields the expression for aigeekpected risk-
adjusted profits as a function of her timaformation:

 EXd —Rplliyp
MU 2 var(dy [ 1)

2.2. Information Strategy

We refer top;, the reciprocal of the variance of agerd private information,
as agent’s information strategyWe model information costs as an increasing



INFORMATION DYNAMICS 143

functionc,(pi), and refer to the process of choosing an information strategy (or
an expectations strategy) stsategy revision

Asset trading and strategy revision take place on two different time st&les.
might imagine that asset trading takes place on a tick-by-tick frequency, and strat-
egy revision on a daily frequency. While agents trade on a tick-by-tick frequency to
generate trading profits, they have time to reevaluate their information sources only
by night when the markets are closed. We model these two timescales by assuming
that all agents revise their strategies at the same t{fgaT, 3T, ..., NT, ...},
T >1. This is called synchronous adjustméribenote asset trading time ly
and strategy revision time hy, so that one unit of-denoted time spanB units
of t-denoted time. Quantities relating to asset trading thus are labeled with a
subscript (e.g.x 1), and quantities relating to strategy revision with subscript
(e.9.,0i,7).

There is a lag ok periods between the time agentevises her information
strategy and the time at which the varianceygf changes to reflect this revision.
This lag represents the time required to make changes such as hiring more analysts
or subscribing to new commercial information services.

LetIT; . denote expected profits averaged over the entire strategy revision period
L

I . = E[IT; ¢], tT<t<@+DT,

whereE[-] denotes the unconditional expectation. Appendix B shows how to write
IT; , as a function of time variables:

i, = T(By, pic) = [(0ir +1/0a + B /oz) A(B,) — 1] /2r,  (3)
0407 /T? 4 02(0407 + 04B/1)? + Zofo?

(02/1 + 040,B + 04B2/r)?
B. = E[pi.]/r, 4)

A(B)

where the above expectation is taken across all agents

The quantityB,, which we refer to asnarket precisionhas a straightforward
intuitive interpretation. To choose her information strategy, ageni would like
toknow the information strategies chosen by the other agents. If most agents choose
a precise information strategy (high), then the market pricg; will provide a
good signal about the terminal dividedd Because the market price is observed
costlessly, the added value of private information will be low. Agethus would
like to choose an imprecise information strategy (low). Conversely, if most
agents choose an imprecise information strategy, aigemtuld like to choose
a precise strategy. Equation (3) shows that all information relevant to choosing
pi.r canin fact be summarized in one quantity—market precision—which simply
represents the information strategy of the average agent.

Because of the period lag in information strategy revision, agentust choose
in periodt her information strategy for period+ «. She wishes to choogg
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in order to maximize her profit minus her information costs:

lr;naXH(Brﬂm Pi,rJr/c) - Cp(pi,r+l()- (5)

1, T+K

At time 7, however, agent does not know the value @, ., and thus cannot
evaluate (5) directly. She instead forms a predictiorBef, , which we denote
B?. .., and uses this prediction to approximate the maximization problem (5) as
follows’:

g]axn (BiEfTH(» Pi,r+/<) - Cp(,Oi,z+/<)~ (6)
The first-order condition for (6) is
C,/g(pi,r-i-i() = A(Bi(a:,+,()/(2r), (7)

which implicitly defines the information strategy .., as a function of expected
market precision:

Pi,t+e = p(BiefT+K) > (8)
wherep(B) = (¢,)"[A(B)/(2)].

2.3. Expectations Strategy

To use (8) to choose an information strategy, agentist formB?,__, her timer
prediction of timer 4+« market precision. Agents form this prediction by choosing
anexpectations strategy jHTo be more precise, define tegategy information
set . to contain common (public) information that all agents observe at the end of
periodz; it is straightforward to show thdt contains a record of realized market
precision&:

{B;,B;_1,...} C ..
An expectations strateghi; is a function mappingd, into a predicted market

precisionBﬁHK. The space of all expectations strategies is denbted

H ={H1, Ha, ..., Hk}. 9)
EachH; in H has an associated cost functmn(H;); rational expectations is the
most complicated and thus the most costly expectations strategy.
Given an expectations strate¢, we can write the information strategy and

the expected profit measure associated withas functions of lagged market
precision:

Pjr = p[Hj(IT—K)]a

I . = I{B;, p[Hj(I.—)]}.

Examples of possible expectations strategies include naive expectations and ratio-
nal expectations. If agenthas naive expectations, then

(10

B° = Hnai(lr) = Br~

i, Ttk
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If agenti has rational expectations, then

Bipjf.;_,( = Hrat(lr) = BT+K~
Rational expectations entails perfect foresight because the dynamis ae
deterministic [equation (13)].

The model's dynamics depend crucially upon the specification of the expec-
tations strategy spacH. In two special cases, the environment just described
reduces to a familiar model, but neither is economically plausible. First suppose
that all agents base their information acquisition upon naive expectations, so that
H = {Hnai}. Whenever current market precision is low, agents will expect future
market precision also to be low. They will all choose precise information strate-
gies, which implies that future market precision actually will be high. Likewise,

a high current market precision will lead to a low future market precision. The
market precision thus follows a periodic cycle, and the model displays classic
cobweb behavior. The early rational expectations literature provided a compelling
argument against cobweb models: In the presence of large predictable cycles, the
benefit to any one agent of choosing a “smarter” expectations strategy would be
enormous.

Suppose, on the other hand, that all agents base their information acquisition
upon rational expectations, so thdt= {H,}. This model has a unique equilib-
rium: All agents acquire the same amount of information in every period (market
precision is constant). Naive expectations thus would predict future market preci-
sion just as accurately as rational expectations. Because forming rational expecta-
tions is costly, individual agents have a strong incentive to switch to a simpler and
cheaper expectations strategy.

It becomes clear that, in the presence of computation costs, the expectations
strategy spacé{ must contain more than one element in order for the model to
be economically sensible. We thus need to specify how agents choose among the
various expectations strategies’ Before choosing an expectations strategy,
agents are incapable of forming forward-looking expectations. This is because
any forward-looking expectations necessarily are defined by an underlying expec-
tations strategy. Agents thus choosetHnusing backward-looking expectations.

Because risk-adjusted profils, (H;) = IT(B;, p[H;(I._,)] are a function of
I, agents knowT, (H;) at the end of period for eachH; in . In other words,
the timet strategy information set contains the profit histories of all strategies
HjéHIlO

{II: (M), 1 (H), ...} C e

For each strategi;, agenti’s associated utility (at the beginning of periojlis
composed of a deterministic and a stochastic compéhent

Ui (Hj) = ujly) + & j../B
(11)
uj(lr) = H‘E(Hj) - Cp{p[Hj(h-,,{)]} - CH(Hj)-
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The deterministic componeunt (1.) is simply the profit measure minus the infor-
mation and expectation costs. The stochastic comporgpishave an extreme
value distribution, and are i.i.d. across agents, expectations strategies, ahtl time.

We are using discrete-choice theory [Manski and McFadden (1981); Anderson
et al. (1993)] to model agents’ choice of expectations strategy. From a technical
perspective, the motivation for the stochastic composgpt is to reconcile two
conflicting objectives of the model. The first objective is to capture, with some
degree of realism, a trading environment in which agents have heterogeneous
expectations. This objective suggests a complex model with many degrees of free-
dom. The second objective is tractability, which generally requires a simple model
with few degrees of freedom. The random variakigs. are a way of introducing
more degrees of freedom into the simple model without losing tractability.

From an economic perspective, thg . represent unmodeled heterogeneity.
The motivation here is similar to that behind more conventional applications of
discrete-choice theory, such as commuters’ choice between modes of transport.
Although commuters from the same suburb face similar time and comfort differ-
entials between various modes, they do not all choose the same mode. Similarly,
our agents choose different expectations strategies even though they all observe
the same profit historig$1, (H), 1T, _1(H), . . .}. We provide four examples of the
unmodeled heterogeneity that thg . are meant to capture:

1. Unobservable characteristichn agent may have unmodeled reasons for preferring
one particular expectations stratelgy.

2. MisspecificationCertain agents might maximize criteria other than the profit measure
I, (H;).

3. Limited information Certain agents might not know all the available strategies from
which to choose irtH.

4. Variation in costs:There may be variation across agents in information and expecta-
tion costs.

From an evolutionary perspective, one may think of discrete choice as a tractable
way of modeling the information dynamics as an evolving ecology of expectations
strategies, in which each strategy competes against the others for survival. Survival
consists of a strategy’s being used by agents. In our model, the population of
strategies is represented’hy each strategy’s fitness by(-), and natural selection
by equation (123

Because the number of agents is infinite andshg are independent across
agents, the law of large numbers implies that the fraction of agents choosing expec-
tations strategyd; is equal to the probability that any individual agent chodsgs
Because the; j . have an extreme value distribution, this probability is given by

nj. =n;(H, ;) =z(H, 1)efuio)
(12

K -1
Z(H, 1,) = [Z ef‘“k“f)] )

k=1
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Because (12) specifies how strategies are distributed across agents, we can use
equations (4), (9), and (10) to show that the market preciBjogvolves according
to

B, =

Sl

K
T - SN . [ TY (- ) § (13
j=1

Equation (13) is the main equation of the model; all other quantities of interest can
de derived fromB,.

Because one of the expectations strategigsis rational expectations [and
Hrat(1.—«) = B;], B, appears in both sides of (13). Solving By thus is not ana-
lytically possible because doing so would require finding the roots of a complicated
nonlinear expression. We use numerical methods (the POLYROOT procedure in
GAUSS) to solve (13), and rely upon simulation techniques to explore the model's
dynamic behavior.

3. VOLATILITY AND TRADING VOLUME

To assess the model’'s empirical relevance, we investigate whether it can explain
three key empirical features found in financial market data:

1. Persistence in volatilityVolatility in stock returns displays a high degree of persis-
tence. See Bollerslev et al. (1992) for a survey of the relevant literature.

2. Persistence in trading volum&ime series for trading volume display statistically
significant serial autocorrelation. This autocorrelation has been documented for in-
dices and individual stocks, as documented by Antoniewicz (1992) and Lamoureux
and Lastrapes (1990).

3. Cross correlation between volatility and trading volunvelatility and trading vol-
ume are highly contemporaneously correlated, as shown by the numerous studies
surveyed by Karpoff (1987).

There has been some recent progress on providing a structural explanation for
the dynamics of trading volume; refer to Wang (1994) and references therein.
However, there has been little progress on explaining volatility persistence, and
virtually none on explaining the joint dynamics of volatility and trading volume.
Gallant et al. (1992, p. 202) write, “there seems to be no model with dynami-
cally optimizing, heterogeneous agents that can jointly account for major stylized
facts.”

3.1. Model’s Implications for Volatility and Volume

Hellwig (1980) shows that, in each asset trading petjdde risky asset’s price is
determined according to

Pt = ¢0(Br) + d’(Bt)dt - V(Br)zta (14)
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where the functiongy, ¢, andy are defined in Appendix A. If we define volatility
in trading period to bev; = (p; — pr_1)?, it follows that

v = [#(Bo)(ch — dh-1) — y(B)(z — z-1)]*. (19
The average volatility over strategy revision perio@ given by the expectation
of (15) conditional orB; :
v, = 2¢%(B;)og + 2y%(B,)o,. (16)

As in Lang et al. (1992), we defineading volumen periodt to be the expected
value (taken across all agents) of the absolute change in asset demand between
t —1 andt:

1
Vi = §E|Xi.t — X t—1l.

Deﬁnexi{t to be the demand for the risky asset of an ageviio has expectations
strategyH;; then,V; can be rewritten as

K
1 A
Vi = > Jz_:l Njr—« E‘Xij,t - Xil,t—l

’

where again the expectation is taken across all agents. One then can take the average
of V; over the strategy revision periadto obtainV, as a function of the market
precisionB;. These calculations are contained in Appendix C.

4. LOCAL STABILITY OF THE STEADY STATE

Suppose that the spaéé of expectations strategies always contains at least two
elements, rational expectatiorid,§) and naive expectation$ifio)]: 14

Hrat(lrflc) = B,
Hnai(O)(Irf;() = BI*K'

We parameterize the information cost function to be quadrafi¢ iithe informa-
tion strategy):

C,(pr) = wp?. (17)

The first-order condition (7) for maximizing risk-adjusted profits with respect to
p implies that

Prrat = A(Br)/(4r (ﬂ),
Pr,nai(0) = A(Br—/c)/(4r (P)-

Let B* denote the model’s rational expectations equilibrium, which is defined by
B* = p(B*).
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Assumption 1. For each expectations strategyH; (B*, ..., B*) = B*.

Assumption 1 requires all expectations strategieX ito be unbiased &B*: If
market precision has bedt for a long time, then each strategy will expect it to
remainB* in the future.

PROPOSITION 1.Suppose that ko, has the lowest computation cost of any
expectations strategyand that the information cost is quadratic as (7). If
Assumptiori holds then there exist constang and {¢°, r€, o<, z°} such that
the steady-state "Bis locally unstable whenever

(a) intensity of choice is highB > ¢,
and one of the following conditions holds
(b) The cost of information is lowy < ¢¢;
(c) Risk aversion is low <r¢;
(d) There is a high degree of share supply uncertainty> of;
(e) The supply of shares is large > Z°.

Proof. See Appendix D. [ ]

Onaheuristic level, the proof proceeds as follows: First, we show that conditions
(b)—(e) lead to instability aB* whenever all agents are restricted to having naive
expectationdHnso).

Then suppose th&* is in fact a stable steady state (when agents’ expectations
are unrestricted), so th&; converges td* once it falls within a certain basin of
attraction. AB, approacheB*, Hnaj0) becomes anincreasingly accurate predictor
of market precision. Because it is the cheapest stratdgy, will eventually
dominate all other expectations strategie$. i large, agents are highly sensitive
to profit differences between expectations strategies; almost all agents will thus
chooseHai). A continuity argument yields the desired instability result.

To understand the economic content of Proposition 1, it is worth briefly review-
ing conditions (a)—(e). In addition to establishing the conditions’ plausibility, the
discussion highlights what sorts of issues may be addressed (in the future) within
our modeling framework:

(a) High intensity of choiceThe intensity of choices determines how important the
stochastic component is in determining each agent’s choice of expectations strategy.
A large 8 implies that the stochastic components play a relatively small role, and that
profit is the main motivator behind this choice. Conversely, a small valgeraplies
that profit plays only a minor role in the choice of expectations strategy. Condition
(a) implies that the more agents’ decisions are driven by profit differences between
strategies, the more likely information-driven instability becomes.

(b) Low information costLow information costs can be interpreted as representing the
increased prevalence of cheap, high-quality electronic information. They also can be
interpreted as a proxy for the transparency of finanial market activity, and for rules
requiring corporate disclosure of financially significant events. Both interpretations
seem plausible, and represent actual conditions in many major financial markets. That



150 PATRICK DE FONTNOUVELLE

increased transparency and availability of information leads to instability may seem
counterintuitive. The result is thus worth reexplaining.

Suppose that in the current time period (period 1), most agents have naive expec-
tations as well as small amounts of private information. Information is scarce and
thus will turn out to be quite valuable. Because it is so cheap, the naive agents then
will purchase a lot of it in the next period (period 2). Information then loses its value,
and so, naive agents purchase even less in period 2 than they did in period 1. This
oscillation in market precision becomes wider and wider until more agents acquire
other expectations strategies.

(c) Lowrisk aversionln addition to describing agents’ attitude toward risk, the parameter
r also can provide a measure of market completeness. Derivatives, for example, allow
risks to be unbundled and placed where they are most easily born, thus lowering the
market's effective level of risk aversion. The existence of derivatives should, in the
context of this model, increase the likelihood of information-driven instability.
(d) High share supply uncertaint$share supply uncerainty can be interpreted as em-
anating from either noise trading [e.g., De Long et al. (1990)], changes in agents’
risk aversion [e.g., Campbell et al. (1993)], or changes in agents’ private investment
opportunities [e.g., Wang (1994)]. In all three cases, the supply uncertainty dilutes the
information content of market prices, and forces traders wishing to remain informed
to purchase more private information.
High share supplyBecause a high share supply requires agents to hold more shares,
it also increases their appetitie for private information. By increasing agents’ appetite
for information, conditions (d) and (e) both lead to the cyclic pattern outlined under
condition (b), and thus to instability.

(e

~

5. RATIONAL VERSUS NAIVE EXPECTATIONS

Proposition 1 suggests that the model might display interesting dynamic behavior
wheng is large. The following two sections explore this possibility using numerical
simulation. First, suppose that the sp&tef expectations strategies has only the
two elements: rational and naive expectations. Let the lag in information strategy
revision be one periodc(= 1), so that

Hrat(lrfl) = Br,
Hnai) (I:—1) = B;_1.

Denote by = ¢y (Hra) — cH [ Hnaio] the difference in cost between rational and
naive expectations. We set the riskless interestRaead the risk-aversion coeffi-
cientr both equal to 1. The mean terminal dividethébr the risky asset is also 1,
and its variancey is 0.015. The mean supphof shares is 1, and the variangg

is 0.1. The fixed cost of forming rational expectations is 0.03; the cost coefficient
¢ for the information strategy is 0.00025.

Figure 1 presents a bifurcation diagram that shows how the model’s long-run
behavior changes gis increased from 10 to 708.Wheng is small, the equi-
librium relation (13) has a stable steady state Ascreases, the model begins to
display periodic behavior. Figure 1 shows periods of 2, 4, 8, and Barayeases
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aV]
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10

B
Ficure 2. Final 25,000 points ifB,_;, B, } space.

T—1

from 10 to about 220. At approximately= 225, the model begins to display
extremely complicated behavior, visiting many poiBtson the vertical axis.

Figure 2 plots the evolution of the model{iB, _1, B, } space when the intensity
of choice 8 =550. The model was simulated for 30,000 periods, of which the
final 25,000 are displayed. One can see easily that the model is unstable by noting
that the slope of the curve is less thail at the intersection with the 45-deg
line B, = B,_1. A small oscillation will be mapped farther and farther frd
until B, reaches the upward-sloping portion on the left side of Figure 2. This
upward-sloping portion then senls nearB* again.

More concretely, begin at point 1, wheBg is near its steady-state vallgs.
BecauseB, does not fluctuate much in this region, the naive expectations strategy
performs well compared to rational expectations, and so, most agents choose naive
expectations and,4; 1 is small. Because almost all of the agents are using naive
expectations, the model has a cobweb-like instability. As this instability grows
over time, the fluctuations iB, become larger. This stage can be seen at points
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Ficure 3. Predictable forecast errors.

2 through 12. Because the fluctuations are growing, the performance of the naive
expectations strategy is deteriorating, so thatis increasing. As the fluctuations
become extremely large, it becomes worthwhile to pay the fixed cost of forming
rational expectations, SB,;13iS near 1 at point 13. Because many agents are now
rational, By3 is very near the steady-stal®, and the amplification of the small
deviation from equilibrium begins again.
Definee, = B, — B,_; to be the forecast error associated with naive expectations.
Figure 3, which plotg, againsk,_;, suggests that the limited strategy spate-
{Hrat, Hnaio)} does not make complete economic sense, for it seems unreasonable
that agents would not revise an expectations strategy that makes such consistent
and easily predictable forecast errors. These errors persist because agents can
eliminate them only by switching to the rational expectations strategy. Unless the
errors are large, paying the associated computation cost simply is not worthwhile.
Figure 4 displays the simulated time series for volatility and trading volume for
40 out of the 30,000 simulated strategy revision periods. As in Figure 2, small
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deviations are amplified repeatedly until volatility and volume return near their
steady-state values. There is thus considerable time variation in both series, which
is a typical feature of market data. Both series also display a marked sawtooth
pattern: If volatility is high in one period, it always will be low in the next period.
Like the predictable forecast errors, this pattern is a result of the limited expecta-
tions strategy spack. Agents using naive expectations generate the cobweb-like
pattern, which is not arbitraged away because rational expectations are expensive
and there are no other expectations strategieX.iThe sawtooth pattern is of
course inconsistent with the empirical findings reviewed in Section 3, and thus
poses another problem for this simple version of the model.

6. ENLARGING THE STRATEGY SPACE

In the simple model of the preceding section, agents make repeated systematic
forecast errors because the cost of forming rational expectations is usually greater
than the benefits of eliminating the errors. Agents do not experiment with other
expectations strategies because, by definitbhas only two elements. Enlarging
the expectations strategy space to include a wider range of backward-looking
expectations allows agents to reduce forecast errors without incurring the full cost
of rational expectations.

Let H,s: denote rational expectations, and ki, denotel-lagged naive ex-
pectations:

Hrat(lr—K) = Bts
(18)
Hnai(l)(lr—x) = B‘E—K—lv 0 = I = 30.

The expectations strategi¢s,jq, allow agents to detect and take advantage of
any cyclical patterns that might appear in the data, and thus eliminate the most
easily predictable forecast errors. The stratefyy 1) would, for example, allow
agents to detect and eliminate sawtooth pattern (of period 2) seen in the preceding
section. The information cost function is still quadratic in the signal precision
[c,(p:) = @p?], and the fixed cost for naive expectations increasgs in

CH(Hra) = atrat,
(19
CH[Hnai(l)] = Qpail .

Specification (19) represents increasing memory costs associated with storing past
values ofB;.
We set the riskless interest rd®and the risk-aversion coefficienboth equal
to 1. The mean payoff for the risky asset is also 1, and its variamges 0.015.
The mean supply of shares is 1,000, and the variangeis 0.1. The fixed cost
argt for purchasing rational expectations is 13, the fixed eggtfor purchasing
naive expectations is 0.1, and the cost coefficgefar signal precision is 2.5. The
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Ficure 5. Model iterations displayed as 25,000 point§By_1, B, } space.

intensity of choices is 2.5. The lag in information strategy revisiorkis= 10, so

that changes in information strategy take 10 periods to come into effect. Because
a strategy revision periodcorresponds to one day, this specification corresponds
to a two-week lag in information strategy revisith.

Figure 5 displays 25,000 iterations of the mod€lBy_;, B, } space, and shows
a clear positive correlation between the valueBpf ; and that ofB,. This pos-
itive correlation suggests that related quantities such as volatility and volume
should display positive autocorrelation. Naive agents cannot exploit (and thus
eliminate) this short-run autocorrelation because of the lag in information strategy
revision.

The forecast error for the strateéiaio) ise; = B; — B;_10. Figure 6 shows the
same 25,000 iterations if@,_10, €;} space’’ These forecast errors are less pre-
dictable than those displayed in Figure 3. Although there may be some predictabil-
ity remaining, predictability matters much less in the enlarged strategy space
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Ficure 6. Less predictable forecast errors.

model because agents can always switch to some other inexpensive expectations
strategy. When stratedyinaioy makes a large forecast error, the number of agents
usingHnaio) Will be small in the next period; the next period’s error is thus of little
economic consequence.

Figure 7 displays the simulated time series for volatility and volume for 100 out
of the 30,000 simulated strategy revision periods. As in Figure 4, both series co-
vary considerably over time. In addition, Figure 7 does not display the persistent,
predictable sawtooth pattern seen in Figure 4. Although there are brief oscilla-
tory periods, these are interspersed with relatively stable periods in which neither
volatility nor volume changes significantly from one period to the next. The overall
result is that the simulated time series are quite plausible looking. We investigate
their plausibility more rigorously in Figures 8 to 10.

Figure 8 compares the autocorrelogram generated from the simulated volatility
series with that generated from daily data on IBM stock retéfnshich provide
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a qualitative benchmark for the model. The first-order autocorrelation coefficient
from the simulations is clearly positive, and between 2 and 10 lags, the simulations
also display positive autocorrelation coefficients. So, the model succeeds in cap-
turing the volatility persistence seen in the IBM data. The empirical and simulated
correlograms also match well near 40 lags, both displaying correlation coefficients
near zero.

Atintermediate lags, however, the simulations generate negative autocorrelation
coefficients, which are not consistent with those from the IBM data. As discussed
previously, naive agents expect market precision to be high in the future when
it is high today, thus inducing negative autocorrelation in market precision—and
hence in volatility and trading volume. Although enlarging the strategy space
does allow other strategies to take advantage of—and thus reduce—the negative
autocorrelation, it does not completely eliminate the efféct.

Figure 9 displays the autocorrelograms of trading volume, and indicates a very
good match between the simulated and actual data. Both display significant au-
tocorrelation at low lags, which diminishes rapidly to a near-zero level at longer
lags. Figure 10 displays the cross correlograms between volatility and trading vol-
ume. As in Figure 8, the simulated data match the IBM data qualitatively but not
guantitatively. Although both correlograms display peaks at 0 lags, the peak for the
simulated data is much more pronounced than that for the actual data. In addition,
the simulated data display negative correlation between volume and volatility at
20 lags, whereas the actual data display no correlation at 20 lags. We conclude that
the model can explain some but not all of the features found in market data, and
we interpret the results as an encouragement for future work.

7. CONCLUSIONS

Are the forces driving volatility and trading volume in financial markets the same
asthose driving assetreturns? This question is important not only to those seeking a
better theoretical understanding of trading dynamics, but also to those with applied
goals such as volatility prediction or policy evaluation.

The empirical literature suggests a negative answer to this question. In ARCH
models [see Bollerslev et al. (1993)], volatility is specified explicitly to be a de-
terministic function of past-return innovations. Stochastic volatility models [e.g.,
Jacquier et al. (1994); Andersen (1996)] decouple volatility and trading volume
from returns by allowing them to depend on an exogenous directing process.
Geweke (1995) finds that stochastic volatility models empirically outperform
ARCH models precisely because they do not constrain volatility to depend on
past realized returns.

Our model provides a theoretical explanation of how the forces driving volatility
and trading volume could differ from those driving returns. In fact, one may view
it as a structurdP counterpart to stochastic volatility models, which are purely
statistical. Returns are driven on a short timescale by dividend innovations. Our
“directing process,” market precision, is decoupled from returns because it evolves
on a long timescale.
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The decoupling of market precision from returns ensures consistency with
the large literature on efficient markets [see, e.g., Fama (1991) or Lo (1996)],
which asserts that returns are very difficult to predict from publicly available
information?! This is an important point, for one would expect a priori that a
model implying predictability in two major market quantities (volatility and vol-
ume) also would imply predictability in the third (returns).

In addition to providing insight into the market's information dynamics, a struc-
tural model can address policy questions that purely statistical models cannot
answer. How might changes in market structure affect trading dynamics? Can the
government stabilize financial markets? Is such stabilization desirable? The main
hurdle to be cleared before the model can credibly address such questions is to
construct a strategy space that is general yet parsimoniously parameterized. Gen-
erality is necessary to avoid restricting agents to narrow or implausible behavioral
patterns (as in Section 5). Parsimony is necessary for the model's behavior to
depend on meaningful economic assumptions, rather than on unobserved behav-
ioral parameters (as in Section 6). Our encouraging results suggest that this is an
important area for future resear¢h.

NOTES

1. One might wonder why computation costs should be important for this model, in which all
computations are relatively straightforward. To analyze the effects of these costs, however, we need
a model that does not overwhelm our own computational abilities. We thus regard the model as a
simplification of a more complex trading environment, in which forming rational expectations requires
intensive computation. See Evans and Ramey (1992, p. 211) for related discussion.

2. Taken together, Assumption 1 and Proposition 1 of Goeree and Hommes (2000) correspond
closely to this paper’s Proposition 1.

3. Arelated model with long-lived assets is explored in de Fontnouvelle (1996).

4. Because returns on the risky asset are normally distributed, the mean-variance criterion (1)
implies the same demand for risky assets as the expected utility approach using a negative exponential
utility function [e.g., Campbell et al. (1993), p. 927]. The mean-variance approach, however, allows
us to calculate (in Section 2.3) an exact expression for the fraction of agents using each expectations
strategy at each time

5. The idea of two different timescales has a long history in economics, and often relates (as it
does in this paper) to explaining heteroskedastic effects in returns. In mixture-of-distributions models
[e.g., Clark (1973); Andersen (1996)], for example, the number of trades per day is governed by an
exogenous directing process, which evolves slowly relative to asset trading time.

6. The assumption of synchronous adjustment is made for tractablity rather than realism. A tractable
way of modeling nonsynchronous adjustment may be to allow a fragtiohagents to revise their
strategies during each asset trading period; we do not believe that such a modification would substan-
tively alter the paper’s conclusions. A full examination of whether such an approach is indeed tractable,
and of its effects on the model's dynamics, is left to future research.

7. The evolution oB; is deterministic, so that rational expectations implies perfect foresight. There
is thus no approximation error between (5) and (6) for agents with rational expectations. An agent using
another expectations strategy simply accepts the approximation error as one of the drawbacks of that
strategy.

8. To see whyl, contains a record of realized market precisions, recall that all agents jnfow
eacht in the strategy revision period so that they know the sample avergye= (Zla p)/T.If
T is large, then the law of large numbers implies tpatis a precise approximation qf, = E.[pt],
the expected market price for strategy revision perio&quation (14) shows th&; is a root of a
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guadratic equation of the forrBTZ(el — 62p;) + B (03 — 04p;) + (05 — 05 p;) = 0. This equation has
one positive root, and thuB; is a well-defined function of the observed informatipn

9. Bray (1982) shows that if agents periodically update their backward-looking expectations, cob-
web models can in fact converge to the rational expectations equilibrium. Models that generate cobwebs
by prohibiting agents from updating or experimenting with their expectations thus are not economically
plausible. See also Townsend (1983) and Bray and Savin (1986).

10. Alternatively, one can specify that at the end of each perjdlde profitability of each expec-
tations strategy over is announced. This specification is very similar to aggregate statistic models in
game theory, in which relevant population aggregates are announced at the end of each playing round
[see, e.g., Fudenberg and Levine (1998)]. The main difference here is that there is an explicit mathe-
matical mechanism through which agents could deduce the population aggregates (profitabilities) from
the observed price history.

11. The meaning of the paramefers discussed immediately following Proposition 1.

12. Different assumptions about the serial dependence i jheseries lead to different formulas
for trading volume (but not for volatility or market precision). To check that the results do not hinge
too strongly on the assumption of serial independence, we recalculated the volume series under the
assumption tha; j . = ¢ j .+ foralli, j, r, andw. The simulation results do not change appreciably
under this alternative assumption.

13. For other applications of discrete choice to dynamic structural modeling, see Follmer (1974),
Durlauf (1989), Blume (1993), Aoki (1995), and Brock and LeBaron (1996).

14. See equation (18) to understand this notation.

15. The parametef was increased from 10 to 700 by increments of 1. For each valdeafthe
horizontal axis, the model was iterated 5,000 times, and the valuBs fafr the final 200 iterations
were plotted on the vertical axis.

16. Clearly, the value chosen ferwill affect the amount of persistence in the model: The longer
k is, the more difficult it will be for agents to exploit short-run predictability in market precision.
Experimentation confirms that the shape of the autocorrelograms for volatility and trading volume, and
thus the quantitative behavior of the model, does depend on the valueTde model's qualitative
behavior (the fact that the model displays copersistence), however, is invariant to reasonable changes
Nk.

17. Because = 10, agents can exploit dependence between ande; only for j > 10.

18. Thereturns data are daily returns on IBM stock from July 6, 1962, through December 31, 1993.
The volume series is generated from the turnover ratio, the number of traded shares divided by the
number of outstanding shares. This ratio was detrended using a 100-day moving average, and then log
transformed.

19. Some alternate specification of the strategy sfagrobably would reduce the negative au-
tocorrelation displayed by the model. However, there is no systematic method of constructing and
exploring strategy spaces, and it is unclear how one might interpret the results of an attempted search
over all possible strategy spaces. Developing such a systematic method is an important goal for future
work.

20. Our model is structural because the directing process (market precision) is endogenous.

21. To ensure consistency with the efficient-markets literature, one also must assume that the
traders’ signal; 1 is not available to the academic econometrician. Because these signals are intended
to represent private information, this seems an innocuous assumption.

22. Work along these lines is developed by Brock and Hommes (1998).
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APPENDIX A. HELLWIG'S COEFFICIENTS
FOR THE PRICE FUNCTION (14)

do,/r + 04ZB/r

¢o(B) = W
adBaZ+Ude/r
$(B) = T(B)’
_ 040z + 04 B/r
y(B) = “RM®B)

M(B) = Uz/r +UdBO'Z+O'dBZ/r.

APPENDIX B. CALCULATING EXPECTED PROFITS

Defines . = 1/pi .. Hellwig (1980, p. 493) shows that in each asset trading périagent
i’'s conditional expectation and conditional variance are given by the following formulas:

0,5.:d 4+ 0,00y« 045 B P — ¢o(B.) + ¥ (B,)Z
D, ¢(B,)D,

Eld | i, pl = (B.1)

Varfd | i+, p] = 0704S /Dx,
(B.2)
D-[ = 0,04 + 0’23,1 + Uds,r Bzz
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Rearranging into statistically independent terms, and notingsttt = By (B), it follows
from (14) and (B.1) that

E(dk — RR | Yit, p) = d[1 — Rp(B)] + ZRy(B,) — Repo(By)
+ (dt - d_)[l - R¢(Br) - Uzs,r/Dr] + (Zt - Z)[Ry(Br) - Uds,r Br/Dr]
+€i,[O-ZUd/D17

so that

E.[E%(d — Rp | Vi, p] = Var,[E(d — R | Yir, P)] + EZ[E(d — Rp [ Yie, P
= o4l — Rp(B,)]* + Ry (B;)’0; — 040,S -/ D:

+{d[1 — R$(B,)] +ZRy(B,) — Rpo(B,)}".
Noting that

1 D,
Var(di — Rp | Vit ) 0,04S .«

=1/s.: +1/og + BZ /o,

leads to the result (3).

APPENDIX C. CALCULATING EXPECTED VOLUME

From equations (2), (B.1), and (B.2), it follows that the change in aigehbldings of the
risky asset betweein— 1 andt is given by

Xit — Xit-1= [(dl —di—1) BTZ —(z—2z-1) Bz} /roz + o1 Vit — Yit-D)/r
The expectation and variance (taken over information trading pejioéithis quantity are

E.(Xit—Xt-1)=0
(C.1
Var, (%« — Xi-1) = 2[pi.c + g (p?, + B [o?) + BZ/oy] /12

Because the expectation of the absolute value of a random vaxialdéributed normally
N(0, b) is E|x| = +/2b/7, the formula for expected volume is

K ) 2 4/.2 2
V, = an.rk\/p” +Ud<)0],, + B,/UZ) + B,/Uz' 2

“ r2
i=1
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APPENDIX D. PROOF OF PROPOSITION 1

From (13), we know thaB, evolves according to ai. —« +1)th-order difference equation:

B, = F(8,B;—,...,B.oL) = F(B,B:—)

1 K
= =D Mi(H.Be)p[H;B.)]. (D.1)

i=1

whereL depends on how many lagged valuesByfenter into the strategied;. Using
Assumption 1, differentiate (D.1) with respectBo_, and evaluate aB*:

K

dF(ﬂ, Btfx) — ,O(B*) Z dnj (H, BI—K)
dB.« |5 g r = dB.« B, —B*
K
1 do[H;(B._)]
+ - nNf(H) ——o—— )
r ; . dB. « B, —B*
where ni(H) = nj(H, B*,..., B*). Because the fractionsn;(-) sum to 1,

Z;(:ldnj()dB,,k:O so that the first term on the right-hand side of the above equa-
tion is zero. Becauseln,io has the lowest cost of any strategy, it follows from (11) and
(12) that limp_, oo N () = 1, so that

dF (oo, B;_,)
dB;

_ 1do(B:—o)

s | 9Bk |g_ g

We have just shown that &*, F (oo, B, _, ) has the same Jacobian as the following system:

B. = f(B:-v), (DZ)

O‘dUZZ/I’Z + 0,(0407 + 04 B/r)? + 270[,2022
f(B) = e > . (D.3)
eM(B)

The system (D.2)—(D.3) describes the model’'s behavior when all agents use naive expecta-
tions, so thahn,g = 1 in every period. Differentiating (D.3) with respectBoyields

f'(B) = [0402(040; + 04B/1)] /[2r M (B)?]
- [adozz/rz + 0,(040, + 04B/r)2 + Ezadzcrzz] [o4o; + 204 B/r]/[2r 2yM(B)3].
(D.4)
Now, for each value o, let the functionB*(¢) denote the steady-state value®fthe

market precision. Substituting*(¢) into (D.3) yields

1 Udazz/rz+az[0daz+0dB*(g0)/r]2+Z7adzazz D5
B 4r 29 M[B*()]2B*(¢) ' '
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Itis then clear that lip,oB*(¢) = oo, for if not, then the right-hand side of (D.5) could
not remain at 1 ag — 0. So, (D.5) implies that

lim ¢B*(¢)° = 0, /4r?. (D.6)
¢—0

Equation (D.4) then implies that lijn.o f'[B*(p)] = —o,/[2r%¢B*(9)®], which, when
combined with (D.6), yields
lim 118" (¢)] = -2 (D.7)
(ﬂ*)

By repeating the argument between equation (D.4) and (D.7) for the parametgrand
Z, it is straightforward to derive the following limits:

lim /18] = —2.
lim f[B*(oy)] = —2,
lim f'[B*(2)] = —4,

whereB*(-) is defined similarly for, o,, andz as it is forgp. There thus exist constants
{¢® r¢ o, 7%} such that the system (D.2)—(D.3) is locally unstable whenever one of the
four conditions (a)—(d) given in the statement of the proposition is satisfied.

BecauseF (o0, B,_,) and f(B,_,) have the same Jacobian Bt, it follows that
F (00, B,_,) is also locally unstable &* whenever one of these four conditions is met. At
least one of the eigenvalues of the Jacolidii{co, B*) thus must lie strictly outside the
unit circle. Because the eigenvalues are continuous functions of the model’'s parameters,
there must exist some critical valgé such that an eigenvalue BF (8, B*) lies outside the
unit circle whenevep > g¢. We conclude that the systeR(3, B,_,) is locally unstable
wheneverd > ¢ and one of conditions (a)—(d) is met. O



