Short Term Effects of Acid Precipitation on a Three Species Aquatic Ecosystem

Brenton Blair

Rensselaer Polytechnic Institute
Problem

- 41% of lakes in the Adirondack Mountains are chronically acidic
- Species in these habitats are vulnerable to low pH levels (high acidity)
- Research over the last 30 years has suggested long term trends are responsible for reduction of species’ densities in some of these ecosystems
- Could short term fluctuations in pH cause extinction of these same species?
The Ecosystem

Pumpkinseed Sunfish

Daphnia

Chlorella
Typical Lake in the Adirondacks

- Most lakes in the Adirondack’s that are susceptible to Acidification are Thin Till Drainage Lakes

- Lakes are vertically stratified with two layers: the Epilimnion and Hypolimnion

- Daphnia migrate between the two layers to feed on Chlorella during the night and avoid predation from Sunfish during the day
Predator-Prey Relationship

- **Chlorella Equation:**
 \[
 \frac{dH}{dt} = rH \left(1 - \frac{H}{K_H}\right) - g(H) P_{epl}
 \]

- **Daphnia Equation in Epilimnion**
 \[
 \frac{dP_{epl}}{dt} = e_p g(H) P_{epl} \left(1 - \frac{P_{epl}}{K_P}\right) + \beta P_{hpl} - \alpha P_{epl} - d_p P_{epl} - g(P_{epl}) F
 \]

- **Daphnia Equation in Hypolimnion:**
 \[
 \frac{dP_{hpl}}{dt} = \alpha P_{epl} - \beta P_{hpl} - d_p P_{hpl}
 \]

- **Pumpkinseed Sunfish:**
 \[
 \frac{dF}{dt} = e_F g(P_{epl}) F - d_F F
 \]
Predator-Prey Parameters dependent on pH

- Three parameters from the predator-prey system are dependent on the pH of the lake: the reproduction rate of Chlorella, and the death rate of each of the higher level species.
Stratified Lake Model

- Volume in Epilimnion:
 \[
 \frac{dV_{epl}}{dt} = I + R - \mu - E
 \]

- Volume of Hypolimnion remains constant:
 \[
 \frac{dV_{hpl}}{dt} = 0
 \]

- Hydrogen in Epilimnion:
 \[
 \frac{dA_{epl}}{dt} = 10^{-pH} (I + .2R) - \lambda \left(\frac{A_{epl}}{V_{epl}} - \frac{A_{hpl}}{V_{hpl}} \right) - \mu \frac{A_{epl}}{V_{epl}}
 \]

- Hydrogen in Hypolimnion:
 \[
 \frac{dV_{hpl}}{dt} = \lambda \left(\frac{A_{epl}}{V_{epl}} - \frac{A_{hpl}}{V_{hpl}} \right)
 \]
Continuous Time Markov Chain

- A Markov chain was utilized to determine whether at any given time the weather is in a state of precipitation or non-precipitation.

- 10 years of weather data from Albany International Airport was analyzed to create the initial probability vector.
Discrete Distribution for Rainfall Data

pH of Rain Distribution

- pH of Rain: 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5
- Probability: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35

Intensity of Rain Distribution

- Intensity of Rain (inches/hour): 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 2.5
- Probability: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
Runoff (inflow Rate) Function

Below is a plot of the second major source of inflow in the summer months, runoff. If the rainfall rate is below .05 inches per hour, runoff is not a considerable source of water input.

![Runoff Rate vs. Rainfall Rate Graph]

\[R(l) = 0.618l - 2.784 \quad \text{if } l > .05 \text{ in/hr} \]
\[R(l) = 0 \quad \text{if } l \leq .05 \text{ in/hr} \]
One Week Sample Simulation

Markov Chain

$pH = -\log_{10}\left(\frac{A}{V}\right)$

Mols of Hydrogen vs. Time

Mols of Hydrogen Epilimnion

pH vs. Time

Volume of Epilimnion vs. Time

Time (Hours)

Time
Solution: Lake pH Dynamics

- 50 simulations were run for a time interval of 3 months
Solution: Ecosystem Behavior

- The optimal pH level of 7 is utilized to determine the dependent parameter values and solve the system deterministically.

- A phase space of this optimal system is to the above right (6 months are shown to display the periodic behavior).

- It is important to note Daphnia’s migration behavior in the plot to the bottom right (every 12 hours the migration rates change).
Solution (continued)

- Using the average pH of each layer of the lake in the 50 stochastic simulations, 5.58 and 5.62, the system was solved deterministically. As documented in long term research: fish are the most vulnerable in such habitats and become sparse.
Solution (continued)

- In 22% of the 50 simulations, Pumpkinseed Sunfish became extinct. Chlorella’s tolerance for higher acidity allowed it to be unaffected by the stochastic simulations. Daphnia, the migrating middle species on average saw a decrease in population density by 26%, but at no point became extinct.
Conclusions

- A more familiar deterministic approach using the average pH yielded outcomes found similar in long term research: sparse fish population in vulnerable environments, yet did not imply extinction.

- Common long term deterministic methods do not capture potential extinction due to short term fluctuations found in the empirical based stochastic model.
Questions?
References

Acknowledgements

This Research was supported by the National Science Foundation through grant DMS-0639321

Special thanks to Professor Peter Kramer, Professor Brad Lister, Professor Isom Herron and Lisa Rogers